Муниципальное бюджетное общеобразовательное учреждение городского округа Тольятти "Школа с углубленным изучением отдельных предметов № 93 имени ордена Ленина и ордена Трудового Красного Знамени "Куйбышевгидростроя" СП Центр «Школьная академия»

«Принято» на заседании педагогического совета Протокол № 7 от 28.05. 2024 «Утверждаю» директор МБУ «Школа №93» ________А.Г. Родионов

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Робототехника»

Возраст обучающихся: 7 -15 лет

Срок реализации: 1 год

Разработчик: Петухова Кристина Викторовна, педагог дополнительного образования СП Центра «Школьная академия»

Оглавление

1.	Пояснительная записка	3
2.	Учебно-тематический план	11
3.	Содержание	12
4.	Методическое обеспечение	14
5.	Список литературы	14

Робототехника является одним из важнейших направлений научно - технического прогресса, в котором проблемы механики и новых технологий соприкасаются с проблемами искусственного интеллекта.

За последние годы успехи в робототехнике и автоматизированных системах изменили личную и деловую сферы жизни человека. Роботы широко используются в транспорте, в исследованиях Земли и космоса, в хирургии, в военной промышленности, при проведении лабораторных исследований, в сфере безопасности, в массовом производстве промышленных товаров и товаров народного потребления.

Содержание и структура программы «Робототехника» направлены на формирование устойчивых представлений о робототехнических устройствах как едином изделии определенного функционального назначения и с определенными техническими характеристиками.

Дополнительная общеобразовательная общеразвивающая программа разработана в соответствии со следующими нормативно-правовыми документами:

- Федеральный закон от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации» (далее закон № 273-ФЗ), гл. 1, ст. 2, п. 14)
- Концепция развития дополнительного образования до 2030 года (утверждена распоряжением Правительства РФ от 31.03.2022 № 678-р);
- Стратегия развития воспитания в Российской Федерации на период до 2025 года (утверждена распоряжением Правительства Российской Федерации от 29.05.2015 № 996-р);
- План мероприятий по реализации в 2021 2025 годах Стратегии развития воспитания в Российской Федерации на период до 2025 года (утвержден распоряжением Правительства Российской Федерации от 12.11.2020 № 2945-р);
- Приказ Министерства образования и науки Российской Федерации от 23.08.2017 № 816 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ»;
 - Приказ Министерства просвещения Российской Федерации от 27 июля 2022 г.

№ 629 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;

- Приказ Министерства просвещения РФ от 03.09.2019 № 467 «Об утверждении Целевой модели развития региональных систем дополнительного образования детей»;
- Постановление Главного государственного санитарного врача РФ от 28.09.2020 № 28 «Об утверждении СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
- Стратегия социально-экономического развития Самарской области на период до 2030 года (утверждена распоряжением Правительства Самарской области от 12.07.2017 № 441);
- Письмо Министерства образования и науки РФ от 18.11.2015 № 09-3242 «О направлении информации» (с «Методическими рекомендациями по проектированию дополнительных общеразвивающих программ (включая разноуровневые программы)»;
- Письмо министерства образования и науки Самарской области от 30.03.2020 № МО-16-09-01/434-ТУ «Методическими (c рекомендациями ПО подготовке дополнительных общеобразовательных общеразвивающих программ К процедуры экспертизы (добровольной сертификации) прохождению ДЛЯ последующего включения в реестр образовательных программ, включенных в систему ПФДО»)

Направленность дополнительной общеобразовательной программы – *техническая*.

По уровню усвоения — *ознакомительная*. Предполагает удовлетворение познавательного интереса обучающихся, расширение их информированности в данной образовательной области, обогащение навыками общения и приобретение умений совместной деятельности в освоении программы.

Новизна данной программы в том, что обучение детей строится с учётом освоения конкретных технологических операций, в ходе создания роботов и их программирования.

Актуальность — дополнительной общеобразовательной программы заключается в том, что в настоящий момент в России развиваются нано и ІТ-технологии, электроника, механика и программирование, таким образом, созревает благодатная почва для развития компьютерных технологий и робототехники. Робототехника - это проектирование и конструирование всевозможных интеллектуальных механизмов - роботов, имеющих модульную структуру и обладающих мощными микропроцессорами.

Педагогическая целесообразность — обучающиеся научатся объединять реальный мир с виртуальным в процессе конструирования и программирования кроме этого, дети получат дополнительное образование в области физики, механики, электроники и информатики.

Цель и задачи:

Цель - создать условия для развития творческих способностей и формирование раннего профессионального самоопределения школьников в процессе конструирования и проектирования.

Задачи -

Образовательные:

- дать первоначальные знания по устройству робототехнических устройств;
- научить основным приемам сборки и программирования робототехнических средств;
- сформировать общенаучные и технологические навыки конструирования и проектирования;
- познакомить с правилами безопасной работы с инструментами необходимыми при конструировании робототехнических средств.

Развивающие:

- развивать творческую инициативу и самостоятельность;
- развивать психофизиологические качества учеников: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном.

Воспитательные:

• формировать творческое отношение по выполняемой работе;

• воспитывать умение работать в коллективе.

Возраст детей – 7 – 15 лет

Сроки реализации - Программа рассчитана на 1 год обучения.

Формы обучения - фронтальные (беседа, лекция, проверочная работа);

Формы организации деятельности: - групповые (олимпиады, фестивали, соревнования);

- индивидуальные (инструктаж, разбор ошибок, индивидуальная сборка робототехнических средств).

Режим занятий — 3 часа в неделю на одну группу. Количество обучающихся 12 — 15 человек.

Ожидаемые результаты —

К личностным результатам освоения программы относятся:

- критическое отношение к информации и избирательность её восприятия;
- осмысление мотивов своих действий при выполнении заданий;
- развитие любознательности, сообразительности при выполнении разнообразных заданий проблемного и эвристического характера;
- развитие внимательности, настойчивости, целеустремленности, умения преодолевать трудности – качеств весьма важных в практической деятельности любого человека;
- развитие самостоятельности суждений, независимости и нестандартности мышления;
- формирование компетентностей, связанных с интеллектуальным и духовным развитием;
- воспитание чувства справедливости, ответственности;
- начало профессионального самоопределения, ознакомление с миром профессий, связанных с робототехникой;
- самоанализ физического и эмоционального состояния.

Метапредметные результаты

Регулятивные универсальные учебные действия:

- принимать и сохранять учебную задачу;
- планировать последовательность шагов алгоритма для достижения цели;

- формировать умения ставить цель создание творческой работы,
- планировать достижение этой цели;
- осуществлять итоговый и пошаговый контроль по результату;
- адекватно воспринимать оценку педагога;
- различать способ и результат действия;
- вносить коррективы в действия в случае расхождения результата решения задачи на основе ее оценки и учета характера сделанных ошибок;
- в сотрудничестве с педагогом ставить новые учебные задачи;
- проявлять познавательную инициативу в учебном сотрудничестве;
- осваивать способы решения проблем творческого характера в жизненных ситуациях;
- оценивать получающийся творческий продукт и соотносить его с изначальным замыслом, выполнять по необходимости коррекции либо продукта, либо замысла.

 Познавательные универсальные учебные действия:
- осуществлять поиск информации в индивидуальных информационных архивах учащегося, информационной среде образовательного учреждения, в федеральных хранилищах информационных образовательных ресурсов;
- использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач;
- ориентироваться на разнообразие способов решения задач;
- осуществлять анализ объектов с выделением существенных и несущественных признаков;
- проводить сравнение, классификацию по заданным критериям;
- строить логические рассуждения в форме связи простых суждений об объекте;
- устанавливать аналогии, причинно-следственные связи;
- моделировать, преобразовывать объект из чувственной формы в модель, где выделены существенные характеристики объекта (пространственно-графическая или знаково-символическая);
- синтезировать, составлять целое из частей, в том числе самостоятельное достраивание с восполнением недостающих компонентов;

• выбирать основания и критерии для сравнения, сериации, классификации объектов;

Коммуникативные универсальные учебные действия:

- аргументировать свою точку зрения на выбор оснований и критериев при выделении признаков, сравнении и классификации объектов;
- выслушивать собеседника и вести диалог;
- признавать возможность существования различных точек зрения и права каждого иметь свою;
- планировать учебное сотрудничество с учителем и сверстниками;
- определять цели, функций участников, способов взаимодействия;
- осуществлять постановку вопросов;
- инициативное сотрудничество в поиске и сборе информации;
- разрешать конфликты;
- выявление, идентификация проблемы, поиск и оценка альтернативных способов разрешения конфликта, принятие решения и его реализация;
- управлять поведением партнера, контроль, коррекция, оценка его действий;
- уметь с достаточной полнотой и точностью выражать свои мысли в соответствии с задачами и условиями коммуникации;
- владеть монологической и диалогической формами речи.

По окончании обучения учащиеся должны

знать:

- правила безопасной работы;
- основные компоненты конструкторов ЛЕГО;
- конструктивные особенности различных моделей, сооружений и механизмов;
- компьютерную среду, включающую в себя графический язык программирования;
- виды подвижных и неподвижных соединений в конструкторе;
- конструктивные особенности различных роботов;
- как передавать программы NXT;
- как использовать созданные программы;

- приемы и опыт конструирования с использованием специальных элементов, и других объектов и т.д.;
- основные алгоритмические конструкции, этапы решения задач с использованием ЭВМ.

уметь:

- использовать основные алгоритмические конструкции для решения задач;
- конструировать различные модели;
- использовать созданные программы;
- применять полученные знания в практической деятельности;

владеть:

- навыками работы с роботами;
- навыками работы в среде ПервоРобот NXT.

Для определения качества обученности по данной программе используется уровневая оценка: *стартовый, базовый, продвинутый*.

Критерии и способы определения результативности

- результаты работ обучающихся;
- создание роботов из имеющихся в наличии учебных конструкторов по робототехнике;
- участия на фестивалях и олимпиадах разного уровня.
- самостоятельная творческая деятельность.

Применяется 3-х балльная система оценки знаний, умений и навыков обучающихся (выделяется три уровня: ниже среднего, средний, выше среднего). Итоговая оценка результативности освоения программы проводится путём вычисления среднего показателя, основываясь на суммарной составляющей по итогам освоения 3-х модулей.

<u>Уровень освоения программы ниже среднего</u> – ребёнок овладел менее чем 50% предусмотренных знаний, умений и навыков, испытывает серьёзные затруднения при работес учебным материалом; в состоянии выполнять лишь простейшие практические задания педагога.

<u>Средний уровень освоения программы</u> – объём усвоенных знаний, приобретённых умений и навыков составляет 50-70%; работает с учебным материалом с помощью

педагога; в основном, выполняет задания на основе образца; удовлетворительно владеет теоретической информацией по темам курса, умеет пользоваться литературой.

Уровень освоения программы выше среднего — учащийся овладел на 70-100% предусмотренным программой учебным планом; работает с учебными материалами самостоятельно, не испытывает особых трудностей; выполняет практические задания с элементами творчества; свободно владеет теоретической информацией по курсу, умеет анализировать литературные источники, применять полученную информацию на практике.

Формы подведения итогов

- Тестирование.
- Соревнование.
- Представление и защита программно- управляемого робота.

Учебно-тематический план программы «Робототехника»

No	Название раздела, темы, модуль	K	оличество час	ОВ	Формы
п/п		Всего	Теория	Практика	обучения/ аттестации/ контроля
1.	Модуль № 1 «Введение в робототехнику»	36	10	26	беседа, лекция, проверочная работа/ групповые олимпиады, фестивали, соревнования; тестирование, соревнование.
2.	Модуль № 2 «Конструирование и программирование»	36	10	26	беседа, лекция, проверочная работа/ групповые

					олимпиады, фестивали, соревнования; тестирование, соревнование.
3.	Модуль № 3 «Проектная деятельность»	36	10	26	беседа, лекция, проверочная работа/ групповые олимпиады, фестивали, соревнования; тестирование, соревнование.

1 Модуль «Введение в робототехнику»

Реализация этого модуля направлена на знакомство с существующими видами роботов, значением роботов в жизни человека, основными направлениями применения роботов. Дети знакомятся с правилами работы с конструктором LEGO и средой программирования модуля. Модуль составлен так, чтобы каждый ребенок получил интерес к занятиям робототехникой.

Цель модуля: создание условий для формирования интереса к устройству роботов, развития стремления разобраться в их конструкции и желания самостоятельно конструировать и программировать модели роботов.

Задачи модуля:

- получить общие представления о робототехнических устройствах;
- ознакомить с основными направлениями применения роботов в жизни человека,
- продемонстрировать передовой опыт в создании роботов в нашей стране и в мире;
- ознакомить с конструкторами компании ЛЕГО, их функциональным назначением с демонстрацией имеющихся у нас наборов;

- ознакомить с интернет ресурсами, связанными с робототехникой;
- обучить правилам безопасной работы с конструктором;
- изучить названия основных механических деталей и датчиков набора Lego Mindstorms EV3, их назначение.

Учебно-тематический план 1 модуля «Введение в робототехнику»

№	Наименование тем	М Количество часов			
п/п		Всего	Теория	Практика	аттестации/ контроля
1.	Введение. Техника безопасности. Роботы. Виды роботов. Значение роботов в жизни человека. Основные направления применения роботов.	3	1	2	Входящая диагностика, наблюдение
2.	Информация о конструкторах компании ЛЕГО, их функциональном назначении и отличии. Демонстрация имеющихся наборов	6	2	4	Беседа, наблюдение
3.	Правила техники безопасности при работе с роботами конструкторами. Правила обращения с роботами.	3	1	2	Беседа, наблюдение
4.	Основные механические детали и датчики набора Lego Mindstorms EV3 и их назначение.	6	1	5	Беседа, наблюдение
5.	Знакомство с модулем EV3 и основными механизмами конструктора	6	1	5	Входящая диагностика, наблюдение.
6.	Изучение среды управления и программирования. Алгоритмы. Решение задач на движение	6	2	4	Беседа, наблюдение. Практическое задание
7.	Итоговое занятие: сборка простого робота по инструкции	6	1	5	Беседа. Практическое занятие
	итого:	36	9	27	

а безопасности.

Роботы. Виды роботов. Значение роботов в жизни человека. Основные направления применения роботов.

Теория: Знакомство с каждым учеником, его интересами и увлечением. Материал, используемый для изготовления моделей роботов. Ознакомить с целями и задачами объединения, правилами поведения в кабинете робототехники, традиции.

Практика: Демонстрация работы готовых моделей роботов из конструктора Lego Mindstorms. Управление моделью.

Тема 2 Информация о конструкторах компании ЛЕГО, их функциональном назначении и отличии..

Теория: История развития компании ЛЕГО, знакомство с конструкторами компании ЛЕГО, их функциональным назначением с демонстрацией имеющихся у нас наборов.

Практика: Сборка модели тележки с одним мотором. Управление моделью с помощью второго мотора.

Тема 3 Правила техники безопасности при работе с роботами конструкторами.

Теория: Правила обращения с роботами. Обучение правилам поведения и безопасной работы с конструктором.

Практика: Конструирование робота «Пятиминутка».

Tema 4 Основные механические детали и датчики набора Lego Mindstorms EV3 и их назначение

Теория: Ознакомление с комплектом деталей для изучения робототехники: контроллер, сервоприводы, соединительные кабели, датчики: касания, ультразвуковой, освещения. Показ действующей модели робота и его программ: на основе датчика освещенности, ультразвукового датчика и датчика касания.

Практика: Конструирование робота «Базовая тележка». Выполнение заданий с датчиком касания и ультразвуковым датчиком.

Тема 5 Знакомство с модулем EV3.

Теория: Ознакомление с модулем EV3, варианты питания, включение и выключение. Порты, их назначения и маркировка. Обсуждение усовершенствований EV3-блока по сравнению с NXT-2.0, характеристики блока.

Практика: Использование экрана модуля. Режимы работы блоков «Экран» и «Звук». Создание мультфильмов и демонстрация их на экране модуля.

Тема 6 Изучение среды управления и программирования. Алгоритмы. Решение задач на движение.

Теория: Понятие «программа», «алгоритм». Алгоритм движения робота по кругу, вперед- назад, «восьмеркой» и пр.

Практика: Написание программы для движения по кругу через меню контроллера. Запуск и отладка программы. Конструирование робота ТурбоБот.

Тема 7 Итоговое занятие.

Теория: сборка приводной платформы по инструкции.

Практика: Сборка приводной платформы по инструкции. Самостоятельная сборка робота Атом по инструкции.

2 Модуль «Конструирование и программирование»

Реализация этого модуля направлена на изучение составных частей универсального комплекта LEGO MINDSTORMS EV3 EDU, их функций, методам сборки конструкций, подвижных и неподвижных узлов, изучению среды программирования EV3, способность учащихся воспроизвести этапы сборки роботов разной сложности по инструкции, а также конструирование роботов собственной конструкции и составление программ различной сложности.

Модуль разработан с учетом личностно — ориентированного подхода и составлен так, чтобы каждый ребенок имел возможность свободно выбрать конкретный объект работы, наиболее интересный и приемлемый для него. Формирование у детей начальных научно-технических знаний, профессионально-прикладных навыков и создание условий для социального, культурного и профессионального самоопределения, творческой самореализации личности ребёнка в окружающем мире.

Цель модуля: развитие творческих способностей и формирование раннего профессионального самоопределения подростков в процессе конструирования и проектирования.

Задачи модуля:

научить основным приемам сборки и программирования робототехнических средств;

сформировать общенаучные и технологические навыки конструирования, проектирования и программирования;

научить работать в команде и находить свою роль в коллективной работе;

развитие логического мышления;

развитие системного мышления;

развитие англоязычного словарного запаса;

развивать психофизиологические качества учеников: память, внимание, способность логически мыслить, анализировать, концентрировать внимание на главном; развитие художественного вкуса и творческой активности.

Учебно-тематический план 2 модуля «Конструирование и программирование»

№	Наименование тем	Количест	гво часов		Формы
п/п		Всего	Теория	Практика	аттестации/ контроля
1	Датчик касания, датчик цвета, ультразвуковой датчик	3	1	2	Беседа, наблюдение, практическая работа
2	Программирование с использованием циклических алгоритмов	3	1	2	Беседа, наблюдение, практическая работа
3	Программирование с использованием циклических алгоритмов с ветвлением	3	1	2	Беседа, наблюдение, практическая работа
4	Обнаружение черты. Сборка робота и его программирование для движения по линии с одним датчиком цвета	3	1	2	Беседа, наблюдение, практическая работа

5	Доработка робота и его программирование для движения по линии с двумя датчиками цвета	3	1	2	Беседа, наблюдение, практическая работа
6	Соревнования роботов по прохождению трассы на время	3	0	1	Беседа, наблюдение, практическая работа
7	Пропорциональное линейное управление для движения по линии	3	1	2	Беседа, наблюдение, практическая работа
8	Нелинейное управление движением по косинусному закону.	3	1	2	Беседа, наблюдение, практическая работа
9	Создание программы разворота в три приема.	3	1	2	Беседа, наблюдение, практическая работа
10	Реакция на освещенность. Программирование работы «автоматических фар»	3	1	2	Беседа, наблюдение, практическая работа
11	Сборка робота и его программирование для движения по линии с препятствиями	3	1	2	Беседа, наблюдение, практическая работа
12	Соревнование роботов на тестовом поле по прохождению трассы с препятствиями	3	0,5	2,5	Беседа, наблюдение, практическая работа
	Итого:	36	9,5	25,5	

Содержание модуля «Конструирование и программирование»

Тема 1. Датчик касания, датчик цвета, ультразвуковой датчик

Теория: Палитра программирования Датчик. Датчик касания. Внешний вид. Режим измерения. Режим сравнения. Режим ожидания. Изменение в блоке ожидания. Работа блока переключения с проверкой состояния датчика касания.

Практика: Конструирование робота с датчиками. Упражнения по программированию робота с использованием различных датчиков. Задания для самостоятельной работы.

Тема 2. Программирование с использованием циклических алгоритмов. **Теория:** Написание программы с циклом. Понятие «цикл». Использование блока «цикл» в программе.

Практика: Решение задач на движение с использованием циклов.

Движение робота по сторонам квадрата. Самостоятельное составление программ, установка количества циклов. Конструирование робота художника. Тестирование работы программ на модели робота.

Тема 3 Программирование с использованием циклических алгоритмов с ветвлением.

Теория: Программирование роботов на одновременное выполнение нескольких задач с использованием различных датчиков.

Практика: Тестирование работы программ на модели робота Исследователя.

Тема 4 Обнаружение черты. Сборка робота и его программирование для движения по линии с одним датчиком цвета.

Теория: Варианты следования по линии. Калибровка датчика. Отражение светового потока при разном расположении датчика над поверхностью линии. Алгоритм ручной калибровки. Определение текущего состояния датчика. **Практика:** Конструирование робота Линейный ползун. Выполнение задания для самостоятельной работы.

Тема 5 Доработка робота и его программирование для движения по линии с двумя датчиками цвета

Теория: Варианты робота с двумя датчиками цвета. Калибровка датчиков. Алгоритм составления программы с использованием 2-х датчиков цвета. Преимущества использования 2-х датчиков цвета.

Теория: Конструирование робота для движения по линии с двумя датчиками цвета. Калибровка датчиков. Отладка программы. Настройка работы робота.

Тема 6 Соревнования роботов по прохождению трассы на время. Регламент состязаний. Варианты конструкций.

Теория: Примеры алгоритмов. Команды собирают роботов, составляют алгоритм на движения по линии.

Практика: Проведение соревнования на лучшее время прохождения трассы. Выявление плюсов и минусов роботов. Корректировка программы для обеспечения точности и скорости выполнения поставленной задачи.

Тема 7: Пропорциональное линейное управление.

Теория: Использование одного датчика. Использование двух датчиков. Формулы управления. Коэффициент пропорциональности. Реализация алгоритма пропорциональности управления с одним датчиком цвета. Реализация алгоритма пропорциональности управления с двумя датчиками цвета.

Практика: Упражнения. Настройка работы робота для движения по линии с одним и двумя датчиками. Подбор коэффициента пропорциональности для стабильной работы робота.

Тема 8: Нелинейное управление движением по косинусному закону.

Теория: Линейное управление. Нелинейное управление. Формулы косинусного управления. Управлениероботом при движении по вектору. Пример программы нелинейного управления движения по косинусному закону с одним датчиком.

Практика: Упражнения. Настройка работы робота для стабильного движения по линии.

Тема 9 Создание программы разворота в три приема.

Теория: Самостоятельная сборка трехколесного бота и составление программы, позволяющей роботу разворачиваться в три приема при обнаружении препятствия.

Практика: Изучение алгоритма действий программы, осуществление отладки и запуска программы, отладка работы датчиков.

Тема 10 Реакция на освещенность. Программирование работы «автоматических фар».

Теория: Составление программы для автоматического включения и выключения «фар» автомобиля при изменении освещенности в помещении.

Практика: тестирование и корректировка программы.

Тема 11 Сборка робота и его программирование для движения по линии с препятствиями.

Теория: Сборка трехколесного бота и составление программы, позволяющей роботу двигаться по черной линии траектории, объезжая препятствия.

Практика: Корректировка программы для обеспечения точности и скорости выполнения поставленной задачи.

Тема 12 Соревнование роботов на тестовом поле по прохождению трассы с препятствиями.

Теория: Алгоритм движения по линии.

Практика: Команды при необходимости дорабатывают роботов и алгоритм на движение по линии с объездом препятствий.

Проведение соревнования на лучшее время прохождения трассы с зачетом времени и количества ошибок.

3 Модуль «Проектная деятельность»

Реализация данного модуля направлена на сопровождение самостоятельной деятельности учащегося и организацию образовательных ситуаций, в которых учащийся ставит и решает собственные проблемы, достигает запланированных результатов, выраженного в виде конечного продукта.

Технология проектной деятельности предусматривает работу в небольших группах и требует от каждого участника деятельности стать субъектом собственной активности, сформировать компетенции па каждом этапе проектирования.

Цель модуля: обучение учащегося через постановку перед ним значимой в исследовательском, творческом плане проблемы (задачи), требующей интегрированного знания, исследовательского поиска для ее решения и создания конечного продукта.

Задачи модуля:

формирование умения ставить цель – создание творческой работы, планирование достижение этой цели;

научить работать в команде и находить свою роль в коллективной работе; осуществлять поиск информации в индивидуальных информационных архивах учащегося, информационной среде образовательного учреждения, в федеральных хранилищах информационных образовательных ресурсов;

использовать средства информационных и коммуникационных технологий для решения коммуникативных, познавательных и творческих задач; ориентироваться на разнообразие способов решения задач;

развитие внимательности, настойчивости, целеустремленности, умения преодолевать трудности.

Учебно-тематический план 3 модуля «проектная деятельность»

	Наименование тем		Количеств	Формы	
п/п		Всего	Теория	Практика	аттестации/ контроля
1.	Введение: Конструирование собственной модели робота.	3	1	2	Беседа, наблюдение, практическая работа
2.	Программирование и испытание собственной модели робота.	6	1	5	Беседа, наблюдение, практическая работа
3.	Презентации и защита проекта «Мой уникальный робот»	2	0	2	Презентация проекта
4.	Создание модели робота - чертежника	6	1	5	Беседа, наблюдение, практическая работа
5.	Презентация готовых моделей робота - чертежника	1	0	1	Презентация проекта
6.	Соревнования на точность выполнения действий робота - чертежника	3	0,5	2,5	Соревнования
.7	Конструирование собственной модели робота – помощника человека	6	1	5	Беседа, наблюдение, практическая работа
8.	Программирование и испытание собственной модели робота, подготовка проекта	3	1	2	Беседа, наблюдение, практическая работа
9.	Итоговое занятие: Презентации и защита творческого проекта «Робот – помощник человека»	2	0,5	1,5	Презентация проекта
10.	Итоговое занятие по программе	1	0,5	0,5	Беседа. Практическая работа.

Итого:	36	5,5	30,5	

Содержание программы 3 модуля «Проектная деятельность»

Тема 1 Введение: Конструирование собственной модели робота.

Теория: Разработка проектов по группам.

Практика: Сформировать задачу на разработку проекта группе учеников. На уроке мы делим всех учеников на группы по 2 - 3 человека. Каждая группа сама придумывает себе проект автоматизированногоустройства/установки или робота. Задача учителя направить учеников на максимально подробное описание будущих моделей, распределить обязанности по сборке, отладке, программированию будущей модели. Ученики обязаны описать данные решения в виде блок-схем, либо текстом в тетрадях. При готовности описательной части проектаприступить к созданию действующей модели.

Тема 2 Программирование и испытание собственной модели робота.

Теория: Составление программ для работы собственных моделей роботов.

Практика: Тестированиеработы программ, отладка.

Тема 3 Презентации и защита проекта «Мой уникальный робот» Защита проекта и презентация моделей.

Практика: Презентации и защита проекта «Мой уникальный робот» Защита проекта и презентация моделей.

Тема 4 Создание модели робота-чертежника.

Теория: Модель робота - чертежника

Практика: Сформировать задачу на разработку проекта группе учеников. На уроке мы делим всех учеников на группы по 2 - 3 человека. Каждая группа сама придумывает себе проект автоматизированного устройства, позволяющего начертить на листе формата A4 различные фигуры по заданию учителя.

Тема 5 Презентация готовых моделей робота-чертежника.

Практика: Демонстрация работоспособности моделей на примере рисования произвольных фигур (рисунков).

Тема 6 Соревнования на точность выполнения действий робота-чертежника

Теория: разъяснение задания на выполнение чертежа определенной фигуры с заданными размерами.

Практика: Получение задания на выполнение чертежа определенной фигуры с заданными размерами, отладка программы и проведение соревнования на точность выполнения задания.

Тема 7 Конструирование собственной модели робота – помощника человека **Теория:** конструирование модели робота.

Практика: Разработка проектов по группам. Сформировать задачу на разработку проекта группе учеников. На уроке мы делим всех учеников на группы по 2 - 3 человека. Каждая группа сама придумывает себе проект автоматизированного устройства/установки или робота, позволяющего оказать помощь человеку в реальных условиях.

Тема 8 Программирование и испытание собственной модели робота, подготовка проекта.

Теория: программирование и испытание модели робота.

Практика: при готовности модели начинаем программирование запланированных ранее функций, производим отладку, тестируем работоспособность моделей. Если есть вопросы и проблемы - направляем учеников на поиск самостоятельного решения проблем, выработку коллективных и индивидуальных решений.

Тема 9 Итоговое занятие:

Теория: защита проектов

Практика: Презентации и защита творческого проекта «Робот –помощник человека» Публичная защита проектов с приглашением представителей администрации, педагогов.

Тема 10 Итоговое занятие по программе

Теория: инструктаж к выполнению итогового теста.

Практика: выполнение итогового теста «Роботы».

Ресурсное обеспечение

Аппаратные средства: компьютеры,

сеть Интернет; мультимедиа проектор; принтер.

Программные средства:

операционная система Windows;

Lego Mindstorms Education EV3 (среда программирования);Lego Mindstorms Education NXT 2.0 (среда программирования);

LEGO Digital Designer (среда виртуальногоконструирования); TRIK Studio 3.1.4 (среда программирования).

Конструкторы

Lego Education серии «Перворобот EV3 45544»Lego Mindstormas NXT 2.0 версии 45560

Методическое обеспечение:

- электронные учебники;
- экранные видео лекции, Screencast (экранное видео записываются скриншоты (статические кадры экрана) в динамике);
- видео ролики;
- -информационные материалы на сайте, посвященном данной дополнительной образовательной программе;
- мультимедийные интерактивные домашние работы, выдаваемые обучающимся на каждом занятии.

Список литературы

- 1. Сайт Министерства образования и науки Российской Федерации/Федеральные государственные образовательные стандарты: http://mon.gov.ru/pro/fgos/
- 2. Сайт Института новых технологий/ ПервоРобот LEGO WeDo: http://www.int-edu.ru/object.php?m1=3&m2=62&id=1002
- 3. Методические рекомендации для преподавателя: образовательный робототехнический модуль (базовый уровень): 12 15 лет/ К. В. Ермишин, И. И. Мацаль, А. О. Панфилов. М.: Издательство «Экзамен», 2014. 240 с.
- 4. Образовательная робототехника во внеурочной деятельности: учебно-методическое пособие/ В. Н. Халамовидр. Челябинск: Взгляд, 2011.- 96 с: ил.
- 5. http://www.robot.ru Портал Robot.Ru Робототехника и Образование

Список литературы для учащихся

1. http://lego.rkc-74.ru/

- 2. http://www.lego.com/education/
- 3. http://www.wroboto.org/
- 4. http://www.roboclub.ru РобоКлуб. Практическая робототехника.
- 5. http://confer.cschool.perm.ru/tezis/Ershov.doc